Modeling Languages and Methods for Distributed Embedded Systems

Laurent Michel Alex Shvartsman
CSE Department
ldm@engr.uconn.edu aas@cse.uconn.edu

Workshop on Research and Curriculum Development Opportunities 2013

October 1st, 2013
Student Union Rooms 304 b/c, UConn Storrs Campus, Storrs, CT 06269
Background

• **Tempo Project**
 – Toolkit for Timed Input/Output Automata Formalism

• **Partners**
 – Nancy Lynch (MIT/VeroModo)
 – Alex Shvartsman (UCONN/VeroModo)
 – Laurent Michel (UCONN)
 – Scott Smolka (Stony Brook)
 – Nancy Griffeth (Lehman)
 – Myla Archer (NRL)

• **Past Funding**
 – Air Force STTR (Phases 1 & 2)
Hard Reality

• Distributed Systems are increasingly complex
• Requirements
 – Safety (correctness)
 – Performance
 – Fault tolerance
 – Dynamic
 – Reconfiguration
• Huge gap between
 – Modeling
 – Implementation
Current Practice

• Ad-hoc modeling
• Limited use of formal methods at design stage
• Limited ability to prove key properties
 – Liveness
 – Safety
 – ...
• No continuity through life-cycle
 – Formal tools not used all the way to development
Bottom Line

• Design bugs discovered too late in the process
• Design fails to consider subtle issues
 – E.g., no modeling for continuous state changes
• Correct designs get mangled during
 – Translation
 – Implementation
Modeling with TIOA

- Timed Input / Output Automata
- What it is
 - Modeling Formalism
 - Rooted in automata theory
 - Captures discrete & continuous transitions
 - Captures interactions with its environment
 - Supports composition to deal with complex systems
 - Supports rigorous arguments about system properties
TIOA in a Nutshell

• **Fundamentally**
 – Model system as composition of a collection of interacting state machines.

• **Communication** with peers *precisely* stated

• **Prove** properties of model
 – Correctness, liveness, deadlock free,…
 – Methods: invariants, trace inclusion (“simulation”)

• **Simulate** specification

• **Generate** code from verified specification
Tempo

- Tempo is a *computer-aided design framework*
 - IDE support for complex distributed systems
 - Based on Timed I/O Automata

- Designed to support
 - Modeling and specification
 - Verification and model checking *(UPPAAL)*
 - Theorem Proving *(PVS)*
 - Simulation
 - Code generation
 - Optimal Deployment
Showcase Examples

• **DHCP Failover**
 – *Specified & verified* the protocol
 – *(Found bugs in it!)*

• **RAMBO**
 – Specified protocol
 – Solve the deployment & reconfiguration problem

• **ESDS** *(Eventually Serializable Data Services)*
 – Specified protocol
 – Solved the deployment problem *(NP-hard)*
Brief Example

automaton Thermostat(low, high, initialTemp, ambientTemp, coolingRate, heatingRate:Real)

signature
 output turnOn, turnOff

states
 isOn: Bool := initialTemp < high;
 temp: Real := initialTemp;

transitions
 output turnOn
 pre temp ≤ low ∧ ¬isOn;
 eff isOn := true;
 output turnOff
 pre temp ≥ high ∧ isOn;
 eff isOn := false;

trajectories
 trajdef heaterOff
 invariant ¬isOn;
 stop when temp = low
 evolve d(temp) = coolingRate * (ambientTemp-temp);
 trajdef heaterOn
 invariant isOn;
 stop when temp = high
 evolve d(temp) = heatingRate;
Road Ahead

• Outstanding task
 – Expand code generation from specifications
 – Look into optimization problems
 • Derived from specification
 • Related to deployment
 – Look into alternatives to UPPAAL / PVS
Potential Impact

• “Cradle to Grave” solution for Distributed Systems
 – Detect design flaws early
 – Address operational deployment issues
 – Automate code synthesis for components

• Bottom line

 Cohesive approach to complex and error prone design and implementation tasks
Many Potential Applications

- Time to Completion & Cost depend on system
 - Avionics system?
 - TCAS variant was specified and reasoned about using the IOA methodology
 - Multi-shaft elevator control?
 - Toaster-oven?
Research Team

• L. Michel (CSE)
• A. Shvartsman (CSE)