Data-Driven Optimization under Distributional Uncertainty

Shuo Han

Postdoctoral Researcher
Electrical and Systems Engineering
University of Pennsylvania
Internet of Things (IoT)

- A network of physical objects
 - Devices
 - Vehicles
 - Buildings

- Allows objects to be
 - Sensed and controlled
 - Remotely across the network

- Growing rapidly, by 2020:
 - 50 billion devices
 - 6.58 devices per person
What IoT Brings: More Sensing (and More Data)

- Total size of dataset: **267 GB**
- **1.1 billion** taxi and Uber trips (2009 - 2015)
- Pick-up and drop-off dates/times, locations, distances...

[Source: nyc.gov]
What IoT Brings: More Control

- Smart Home Appliances
- Connected and Autonomous Vehicles
- Wireless Traffic Light Control
- Smart Buildings
Smart Cities: IoT + Decision Support

City Infrastructure

Sensor Data

Control & Optimization Algorithm

Actions
Investment in Smart Cities

The Smart Cities Initiative from the White House (Sep 2015)
“... an infrastructure to continuously improve the collection, aggregation, and use of data to improve the life of their residents – by harnessing the growing data revolution, low-cost sensors, and research collaborations, and doing so securely to protect safety and privacy.”
TerraSwarm: Swarm at The Edge of The Cloud

“How should we make use of data?”

“How should we send data?”

“How should we collect data?”

[J. Rabaey, ASPDAC’08]
Research Interests

Research Topics

- Stochastic Systems
- Multi-Agent Systems
- Network Dynamics

Theory
- Convex Optimization
- Control Theory
- Statistics

Applications
- Energy
- Transportation
Research Overview

Data-Driven Optimization

- [ACC13], [SIOPT15]
- [CDC15], [TASE16], [ICCPS17]

Privacy Solutions for Cyber-Physical Systems

- [Allerton14], [TAC16]

Pricing for Ridesharing

- [ACC17]
Research Overview

Data-Driven Optimization

[ACC13], [SIOPT15]

[CDC15], [TASE16], [ICCPS17]

Privacy Solutions for Cyber-Physical Systems

[Allerton14], [TAC16]

Pricing for Ridesharing

[ACC17]
Motivation: Wind Energy Integration

conventional power plant

Power generation

Wind Energy Data

Control Action: Allocation of energy storage

How can we make use of the wind power generation data to maximally utilize wind power?

[Source]: AESO
Motivation: On-Demand Ridesharing in Cities

How can we make use of the trip data to reduce the average wait time for passengers?

- Pick-up and drop-off times
- Pick-up/drop-off locations
- Travel distances

Control Action: Redistribution of empty vehicles

How can we make use of the trip data to reduce the average wait time for passengers?
Background: Stochastic Programming

\[
\min_x \mathbb{E}_{\theta \sim d} [f(x, \theta)]
\]

- **\(f \):** Objective function
- **\(x \):** Decision variable
 - Ridesharing: Redirection of empty vehicles
 - Wind power integration: Allocation of storage
- **\(\theta \):** Stochastic phenomenon
 - Ridesharing: Future passenger demand
 - Wind power integration: Wind power generation
- **\(d \):** Probability distribution of \(\theta \)
Distribution is Not Always Available

We often do not have:

Instead, we have:

Question: How should these samples be used in a computationally tractable way with performance guarantees?
Using Sampled Data: Previous Methods

Sample average approximation

\[
\min_{x} \quad \frac{1}{n} \sum_{i=1}^{n} f(x, \theta_i)
\]

- Weak guarantee on performance

Robust optimization

\[
\min_{x} \quad \max_{\theta \in \Theta} f(x, \theta)
\]

- Can be extremely conservative

Distributional Information + Uncertainty?
Using Sampled Data: Distributional Uncertainty

• Distributional uncertainty
 - An ambiguity set in the space of probability distributions
 - **No assumption** on the type (continuous vs discrete, Gaussian, uniform, ...) of distributions
 - Contains the true distribution with high probability
 - Informally: “Uncertainty of uncertainty”

• Decision making problem: Distributionally robust optimization

\[
\begin{align*}
\text{minimize} & \quad \max_{d \in D} \mathbb{E}_{\theta \sim d} [f(x, \theta)] \\
\text{vs.} & \quad \text{minimize} \quad \mathbb{E}_{\theta \sim d} [f(x, \theta)]
\end{align*}
\]

- Strong worst-case guarantees
- Subsumes conventional robust optimization
Distributional Uncertainty

- Method 1: Based on certain (pseudo)metric \mathcal{M}
 - KL divergence
 - Wasserstein metric (earth mover’s distance)
- Metric ball centered at the empirical distribution
 \[\mathcal{D}(\epsilon) = \left\{ d : \mathcal{M}(d, \hat{d}) \leq \epsilon \right\} \]
- The ball contains d with high probability
- Advantage: “Nonparametric” characterization
- Disadvantage: Complexity of decision making against \mathcal{D} grows quickly with the number of samples
Distributional Uncertainty (cont’d)

- Method 2: Based on generalized moments (this talk)
 \[\mathcal{D} = \{ d : \mathbb{E}_{\theta \sim d}[g(\theta)] \leq 0 \} \]

- Assume: \(g \) is easily bounded

- Examples
 - Moments: \(\mathbb{E}[\theta] = \hat{\theta}, \ \text{cov}[\theta] = \hat{\Sigma} \)
 - Tail probability: \(\mathbb{P}(\theta \geq \bar{\theta}) \leq \epsilon \)

- Classical concentration inequalities can be used to compute the probability that \(\mathcal{D} \) contains \(d \)

Example (Hoeffding’s inequality):
\[\mathbb{P} \left(\frac{1}{n} \sum_{i=1}^{n} \theta_i \geq \mathbb{E}\theta + t \right) \leq \exp(-2nt^2) \]
Challenges and My Contribution

\[\text{minimize } \max_{x \in \mathcal{D}} \mathbb{E}_{\theta \sim d} [f(x, \theta)] \]

• **Challenge**: Finding the worst-case distribution
 - Infinite-dimensional optimization problem
 - Not numerically tractable

• Previous work on special instances
 - [Scarf, 1958]: Analytical solution for a special case
 - [Bertsimas, Popescu, 2005]: Optimal probability inequalities
 - [Vandenberghe, Boyd, Comanor, 2007]: Optimal Chebyshev bounds
 - [Delage, Ye, 2010]: Piecewise affine functions

• **My contribution**
 - Formulate equivalent convex optimization problem (under certain conditions)
 - Tractable numerical solutions
 - Conditions apply to many resource allocation and scheduling problems
Main Result: Equivalent Convex Optimization Problem

Theorem: There exists an equivalent convex optimization problem for computing the worst-case distribution if

- The objective f is *piecewise concave*
 \[f(\theta) = \max_k f^{(k)}(\theta) \quad f^{(k)} \text{ concave} \]

- The constraint g is *piecewise convex*
 \[g(\theta) = \min_l g^{(l)}(\theta) \quad g^{(l)} \text{ convex} \]

Piecewise Concave Functions

<table>
<thead>
<tr>
<th>Concave</th>
<th>Piecewise Affine</th>
<th>0-1 Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\max_{k \in \mathcal{K}} {a_k^T \theta + b_k}$</td>
<td>$I(\theta \geq a)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resource Allocation/Scheduling</th>
<th>Failure Rate</th>
</tr>
</thead>
</table>

resource allocation/scheduling
Piecewise Convex Functions

<table>
<thead>
<tr>
<th></th>
<th>linear</th>
<th>convex</th>
<th>0-1 indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td></td>
<td></td>
<td>$I(\theta \geq a)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tail probability</td>
</tr>
</tbody>
</table>
The Convex Optimization Problem

\[
\begin{align*}
\text{maximize} \quad & \sum_{k,l} p_{kl} f^{(k)}(\gamma_{kl}/p_{kl}) \\
\text{subject to} \quad & \sum_{k,l} p_{kl} = 1 \\
& p_{kl} \geq 0, \quad \forall k, l \\
& \sum_{k,l} p_{kl} g^{(l)}(\gamma_{kl}/p_{kl}) \leq 0
\end{align*}
\]

For:

\[
\begin{align*}
f(\theta) &= \max_{k \in \{1, 2, \ldots, K\}} f^{(k)}(\theta) \\
g(\theta) &= \min_{l \in \{1, 2, \ldots, L\}} g^{(l)}(\theta)
\end{align*}
\]

- The worst case is always attained by a discrete distribution
- Total number of Dirac masses in the distribution: $K \cdot L$
Storage Allocation for Power Grid

Storage Allocation Problem

\[
\min_x \max_d \mathbb{E}_{\theta \sim d} \left[\min_f \text{Wind_Energy_Wasted}(x, \theta, f) \right]
\]

optimal power flow

piecewise concave in \(\theta \)
Numerical Example: IEEE 14-Bus Test Case

- Network with 5 generators
- Time: one day, 3-hour interval
- Mean and covariance obtained from real wind generation data

[Source]: AESO
The Influence of Information Constraints

On-Demand Ridesharing

\[
\min_{X_{1:T}} \sum_{t=1}^{T} \left[J_D(X_t) + J_E(X_t, r_t) \right]
\]

Vehicle Flows Cost of Rebalancing Wait Time
Robust vs. Non-Robust

- Robust optimization against demand uncertainty

\[
\min_{X_{1:T}} \max_{r_{1:T} \in \Delta} \sum_{t=1}^{T} \left[J_D(X_t) + J_E(X_t, r_t) \right]
\]

NYC Dataset: 4 years, 100 GB

Conventional vs. Distributionally Robust

- Distributionally robust formulation

\[
\min_{X_{1:T}} \max_{d \in \mathcal{D}} \mathbb{E}_{r \sim d} \left\{ \sum_{t=1}^{T} \left[J_D(X_t) + J_E(X_t, r_t) \right] \right\}
\]

Average cost comparison of DRO and RO

Confidence level: Probability the true parameter/distribution lies outside ambiguity set

Note: Confidence level not optimized for distr. robust opt.

Future Directions

Large Datasets
- Distributed computation
- Approximate algorithms

Structured Models
- Markov properties
- Prior knowledge

Online Optimization
- When to discard old data
- When to re-learn
Summary

- **Distributional uncertainty**: A new approach to data-driven optimization
- **A rigorous way to make use of sampled data**
 - Probabilistic guarantees
 - Worst-case analysis/design: Often required for engineering applications
- **Computationally efficient**
 - Convex formulation available for a large class of problems
 - Examples: Resource allocation and scheduling